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Abstract: - In wireless communication throughput is a key 
factor to measure the quality of wireless data link. Throughput 
is defined as the number of information bits received without 
error per second and we would naturally like this quantity as to 
be high as possible. This thesis looks at the problem of 
optimizing throughput for a packet based wireless data 
transmission scheme from a general point of view. The purpose 
of this work is to show the very nature of throughput and how it 
can be maximized that means how we can optimize the 
throughput by observing its certain changing parameter such as 
transmission rate, packet length, signal-to-noise ratio (SNR) 
etc. I tried to take a more general look at throughput by 
considering its definition for a packet-based scheme and how it 
can be maximized based on the channel model being used.  
 
Key words: Throughput, Optimization, AWGN, Rayleigh 
channel, Packet length, Transmission rate, Signal-to-Noise 
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I. INTRODUCTION 
 
Throughput is defined as the number of information bits 
received without error per second and we would 
naturally like this quantity as to be high as possible. In a 
wireless data system [1] many variables affect the 
throughput such as the packet size, the transmission rate, 
the number of overhead bits in each packet, the received 
signal power, the received noise power spectral density, 
the modulation technique, and the channel conditions. 
From these variables, we can calculate other important 
quantities such as the signal-to-noise ratio, the binary 
error rate, and the packet success rate. Throughput 
depends on all of these quantities.  
 
 
Here I discuss the general look at throughput by 
considering its definition for a packet-based scheme and 
how it is maximized based on the channel model being 
used. As an initial step in a theoretical study, I examine 

the influence of transmission rate and packet size in a 
noise-limited transmission environment. The transmitter, 
operating at R b/s, sends data in packets. Each packet 
contains L bits including a payload of K bits and a cyclic 
redundancy check error-detecting code with C bits. A 
forward error correction encoder produces the remaining 
L-K-C bits in each packet. The channel adds white noise 
with power spectral density   watts/Hz and the signal 
arrives at the receiver at a power level of P watts. In this 
research paper I assume   to be the sum of all noise and 
interference, which can be modeled as Gaussian white 
noise. The CRC decoder detects transmission errors and 
generates acknowledgments that cause packets with 
errors to be retransmitted. Table 1 displays a summary of 
the variables in our analysis and their notation [2]. 
 

Quantity Notation Value 
Signal to Noise Ratio γ  10 

Received signal 
power 

P (watts) 5* 910−  W 

Receiver noise power 
spectral density 

N0 (W/Hz) 1510−  W/Hz 

Binary transmission 
rate 

R bits/s Varied 

Packet size L bits Varied 

Cyclic Redundancy 
Check 

C bits 16 bits 

Table 1: Variables in Analysis 
 

 An important objective of data communications systems 
design and operation is to match the transmission rate to 
the quality of the channel. A good channel supports a 
high data rate, and conversely. For a given channel, there 
is a transmission rate that maximizes throughput. At low 
rates, transmitted data arrives without error with high 
probability and an increase in the data rate increases 
throughput. Above the optimum rate, the error 
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probability is high and it is possible to increase 
throughput by decreasing the data rate, thereby 
increasing the probability of correct reception. 
Recognizing this fact, practical communications systems 
including facsimile, telephone modems, wireless local 
area networks, and cellular data systems incorporate rate 
adaptation to match the transmission rate to the quality of 
the channel. In some systems (facsimile and telephone 
modems), the adaptation is static, occurring at the 
beginning of a communication session only. In others, 
the adaptation is more dynamic with the rate rising and 
falling in response to changes in channel conditions. 
 
The research work begins with the analysis by looking at 
throughput optimization as a function of the packet 
length with a fixed transmission rate followed by an 
analysis of throughput as a function of transmission rate 
with a fixed packet length. Using the optimization 
equations obtained, the throughput can be jointly 
optimized with respect to both the packet length and 
transmission rate, both written in terms of the SNR. 
These equations can be used to find the optimal signal-
to-noise ratio (SNR) that the system should be operated 
at to achieve the maximum throughput.  
I have used these equations and simulated those in 
MATLAB and then observed the results in graphical 
representation in MATLAB window. I have talked about 
different variables and how changing certain parameters 
can yield better throughput performance.        
 
 

II. THROUGHPUT ANALYSIS 
 
A.  Throughput Analysis 
 
The amount of data transferred from one place to another 
or processed in a specified amount of time. Data transfer 
rates for disk drives and networks are measured in terms 
of throughput. Typically, throughputs are measured in 
kbps, Mbps and Gbps, the speed with which data can be 
transmitted from one device to another. Data rates are 
often measured in megabits (million bits) or megabytes 
(million bytes) per second. These are usually abbreviated 
as Mbps and MBps, respectively. 
 
B.  Assumptions and Definitions 
 
My analysis includes the following simplifying 
assumptions: [2] 
 
• The CRC decoder detects all errors in the output of 

the sending decoder channel. That means no matter 
what kind of data is transmitting and received by the 
receiving channel we are assuming that the receiving 

channel decoder will be able to get all the data most 
accurately. If there is any error in the bit stream then 
the CRC(Cyclic Redundancy Check) decoder will be 
able to correct all the errors in the received data. 

• Transmission of acknowledgments from the receiver 
to the transmitter is error free and instantaneous. 

• In the presence of errors, the system performs 
selective repeat ARQ (Adaptive Retransmission 
Query) retransmissions. 

• The received signal power is P watts, either a 
constant or a random variable with a Rayleigh 
probability density function, representative of fading 
wireless channels. In this paper, we consider “fast 
fading” in which the values of P for the different bits 
in a packet are independent, identically distributed 
Rayleigh random variables. 

 
System throughput (T) is the number of payload bits per 
second received correctly: 

)(γR f
L
KT =  

(1) 

where (KR/L) b/s is the payload transmission rate and 
f() is the packet success rate defined as the probability 
of receiving a packet correctly. This probability is a 
function of the signal-to-noise ratio 
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In which Eb = P/R joules is the received energy per bit. 
We will now look at maximizing the throughput in a 
Gaussian white noise channel with respect to the 
transmission rate and packet length. 
 

 
Figure 1: Optimum packet length as a function of P 
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III. SIMULATION AND RESULTS 
 
A. Throughput vs. Transmission Rate: Fixed Packet 
Length 
 
1. Equation simulation 
 
To find the transmission rate, R=R* b/s, that maximizes 
the throughput, we differentiate Equation (1) with 
respect to R to obtain: 

dR
dT  = (K / L) )(γf + (K / L) R 

γ
γ

d
df )(

dR
dγ  = (K / L) 
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Next we set the derivative to zero: 
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We adopt the notation *γγ =  for a signal-to-noise ratio 
that satisfies Equation (5). The corresponding 
transmission rate is 
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(6) 

 
A sufficient condition for a locally maximum throughput 
at R=R* is: 

0*2
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(7) 

 
The solution to Equation (5), γ *, is the key to 
maximizing the throughput of a packet data transmission. 
To operate with maximum throughput, the system should 
set the transmission rate to R* in Equation (6). γ * is a 
property of the function, )(γf , which is the relationship 
between packet success rate and signal to interference 
ratio. This function is a property of the transmission 
system including the modem, codecs, receiver structure 
and antennas. Each system has its own ideal signal-to-
noise ratio, *γ . Depending on the channel quality, 
reflected in the ratio P/N0, the optimum transmission rate 
is R* in Equation (6). 
 

 
Figure 2: Throughput vs rate for fixed packet length 

 
 
Graphical Analysis 
 
In the figure 2 I have take three Readings. The first one 
was packet length of 50 bits. We have got the maximum 
throughput at transmission rate of 0.58 Mbps and the 
throughput was .27 Mbps. If we increase the 
transmission rate the throughput was seen to be fallen 
down and at a certain period it went to at the value zero. 
In my second assumption I have seen that for packet 
length of 200 bits the throughput was 0.30 Mbps and at 
the transmission rate of 0.4 Mbps it has gone its highest 
pick. After then it has also fallen down to zero. The third 
assumptions also showed the same. I have noticed that 
when the packet length size was small then the 
throughput has reached its highest pick with higher 
transmission rate and also has fallen in a wide range. But 
as soon as the packet length has kept higher then the 
curve of throughput is stepper rather than flat. When we 
have increased our packet length size then the throughput 
has reached the maximum pick at a lower transmission 
rate and also has fallen down quite quickly. So at the end 
we have come to some several decisions. 
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I have seen that if I keep my packet length less than 400 
bits and greater than 50 bits, then I will be able to get the 
maximum throughput and the transmission rate shouldn’t 
be so high. It has to be in a range of 0.3 Mbps to 0.8 
mbps. So using the general equations for calculating 
throughput in respect of transmission rate and keeping 
the packet length fixed the throughput can be optimized 
in a certain range. 
 
B. Throughput vs. Packet Length: Fixed 
Transmission Rate 
 
Equation simulation 
 
Each packet, of length L bits, is a combination of a 
payload (K bits) and overhead (L-K bits). Because the 
packet success rate, )(γf  is a decreasing function of L, 
there is an optimum packet length, L*. When L<L*, 
excessive overhead in each packet limits the throughput. 
When L>L*, packet errors limit the throughput. When 
there is no forward error correction coding, which we 
shall assume for the entirety of this chapter, (K=L-C, 
where C bits is the length of the cyclic redundancy 
check), there is a simple derivation of L*. In this case, 

LPf ) )(1()( γγ −=  (8) 

 
                                                                                           

Where )(γeP  is the binary error rate of the modem. 
Therefore, in a system without FEC, the throughput as a 
function of L is 
     

T= L
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(9) 

                                
To maximize T with respect to L, we consider L to be a 
continuous variable and differentiate Equation (9) to 
obtain 
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Setting the derivative equal to zero produces a quadratic 
equation in L with the positive root:  
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As shown in Figure 3, 4 and 5 (in which C=16), the 

optimum packet size is a decreasing function of )(γeP .  
As the binary error rate goes to zero, the packet error rate 
also approaches zero and the optimum packet size 

increases without bound. Because )(γeP  decreases with
γ , L* increases monotonically with signal-to-noise 
ratio. Better channels support longer packets. Of course, 
in practice L is an integer and the optimum number of 
bits in a packet is either the greatest integer less than L* 
or the smallest integer greater than L*. 
 
Equations (5) and (11) can be viewed as a pair of 
simultaneous equations in variables L andγ . Their 
simultaneous solution produces the jointly optimum 
packet size and Signal - to- noise ratio of a particular 
transmission system. We will use the notation, L** and 
γ **, respectively for the jointly optimized variables. 
 

 
 

Figure 3: Throughput vs L for a fixed transmission rate 
(1) 

 
 

Figure 4: Throughput vs L for a fixed transmission rate 
(2) 
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Figure 5: Throughput vs. L for a fixed transmission rate 
(3) 

Graphical Analysis 
 
Figure 3 shows and throughput optimization for fixed 
transmission rate varying the value of the packet length. I 
have taken three different assumptions for figure 3. In 
the first assumption I have taken the transmission rate as 
300 kbps and for this value the SNR came as 16.67. I 
have got the value of SNR from the Equation 2. Where P 
(Received Signal Power) is Watts, (Received noise 
power spectral density) is   W/Hz. Those values are 
constant here. In the second assumption I have taken the 
value of transmission rate as 400kbps and SNR as 12.5. 
In the third we have taken the transmission rate as 
600kbps and SNR as 8.33. I have always kept the value 
of C (cyclic redundancy check) as 16bits. 
Figure 4 shows the same work as 3. The only difference 
is I have changed the value of transmission rates. The 
first value is 50 kbps, SNR is 100.  Second one is 
100kbps, SNR is 50 and the third one is 200kbps, SNR is 
25. 
 
In the figure 5 we have increased the transmission rate 
like 700, 800 and 1000 kbps. From those rates I have got 
the value of SNR 7.14, 6.25 and 5.0 respectively. In 
every assumption I have also kept the value of C as 
16bits as a constant.  
 
One very important thing has also been observed. If I 
keep my transmission rate in the range of 0.2mbps to 0.4 
mbps we will be able to get the maximum throughput. 
And for the maximum throughput the packet has come in 
the range of 200bits to 400 bits. So, this observation has 
proved my decision when I observed throughput in terms 
of transmission rate for certain fixed packet length. In 
this observation I have also seen that when I have taken 
the transmission rate higher than the throughput curve is 
going to be more stepper rather than flatter. 
 
C.  White Gaussian Noise Channel 

 
The channel model is used to approximate the way errors 
are introduced in a data stream when it is transmitted 
over a noisy medium. The model we may use in the 
Workshop is the Additive White Gaussian Noise channel 
(AWGN). This channel [3] model is memory less, 
meaning that the distortion of one bit is independent of 
all other bits in the data stream. Here one noise is added 
with the original transmitted signal, called white noise. 
 
The AWGN channel models the distortion incurred by 
transmission over a noisy medium as the addition of a 
zero-mean Gaussian random value to each bit. Decoders 
can take advantage of the added information of "how 
close" a received value is to a valid bit value (0 or 1 for 
our purposes). This type of decoding is called soft 
decision decoding. Because decoders that use soft 
decision decoding take advantage of information that the 
BSC throws away, soft decision decoders often have 
better error correcting capability.For the AWGN model, 
the parameters are noise variance values so they must be 
greater than or equal to 0 
 

 

 

Figure 6: AWGN Channel 

The design [4] of efficient signal sets for transmission 
over channels which are contaminated by Gaussian noise 
has been an active area of research for many years. 
Signal set that is more efficient than another will 
typically result in a comparable savings in transmitted 
energy. Hence the determination of optimal signal sets is 
an important problem from a practical communication 
perspective as well as from a theoretical standpoint. 
However, the optimal selection of signal vectors 
embedded in even the most fundamental type of noise, 
white Gaussian noise, is not known in general. In 1948, it 
was conjectured that, with finite energy constraints but 
without constraint on dimension of signal space, the M 
optimal signal vectors are vertices of a regular simplex in 
(M−1)-dimensional signal space. This conjecture is 
referred to as the strong simplex conjecture (SSC) when 
the signal vectors are constrained only by an average 
energy limitation and as the weak simplex conjecture 
(WSC when the signal vectors are equal-energy-
constrained. Under assumption that signal vectors have 
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equal energy, Bal Krishnan proved that the regular 
simplex is   optimal (in the sense of maximizing the 
detection probability) as λ goes to infinity, optimal as λ 
goes to zero, and locally optimal at all λ, where λ2 is the 
signal-to-noise ratio. Dun bridge proved further that 
under an  average energy constraint the regular simplex 
is  the optimal signal set as λ  goes to infinity and  a local 
ex tremism at all λ. For the case of M=2 , the reg ular 
simplex has been proved to be optimal at all λ for both 
the average and equal energy constraint. Dun bridge 
proved, under an average energy constraint, that the 
regular simplex with M=3 is optimal as λ goes to zero. 
Work on the weak simplex conjecture in was shown by 
Farber in to prove this conjecture for  M<5. 
 
6.3 Equation Derivation 
 
For non-coherent FSK in a white Gaussian noise 
channel, the probability of a bit error is given by: 
 

  2

2
1)(

γ

γ eP =                                               (12)   

                           
and so from (11) above, we can get the length to 
maximize the throughput by plugging in (12) for )(γeP . 
We illustrate how this graph changes with different 
values of R by showing three different plots on Figure 3. 
The solid line uses a transmission rate of 300 kbps (γ
= 16.67) which, from (11), yields a length of L*(16.67) 
= 373 bits to maximize the throughput. The small dotted 
line uses a transmission rate of 400 kbps (γ = 12.5) 
which yields a length of L*(12.5) = 137 bits to maximum 
the throughput. The large dotted line uses a transmission 
rate of 600 kbps (γ = 8.33) which yields a length of 
L*(8.33) = 54 bits to maximize the throughput. The 
relationship between the SNR, γ , and the transmission 
rate, R, is derived from (2).  
 
Some important conclusions can be drawn from this 
information. We first notice that at high SNR values (low 
transmission rates) the packet length used to maximize 
the throughput must be large. When the transmission rate 
increases and the SNR drops, the packet length to 
maximize the throughput must also decrease. Another 
observation we make is how the throughput curve 
behaves for increasing values of L when different SNR 
values are used. From Figure 3 we can see that at high bit 
rates (low SNR) the choice of packet size is more critical 
(i.e. the peak is very localized). On the contrary, at low 
bit rates (high SNR) the packet length doesn’t have much 
of an effect on the throughput. Also, it can be seen that 
the maximum throughput increases with decreasing 

SNR, up to a point. When the SNR gets too low, the 
maximum throughput begins to decrease. This suggests 
that the optimum SNR value to give the maximum 
throughput (γ **) is between 8.33 and 16.67. This 
observation is confirmed when the throughput is 
optimized jointly with both the packet length and the 
SNR. 
 
From (5) we cannot obtain an explicit solution for the 
rate (or SNR) that optimizes throughput directly as was 
done for the length, but the following result is obtained: 
 

  
*2

42

*

γ

γ

L
e

+
=                                                  (13) 

 
This solution results from substituting (8) for )(γf  and 

(12) for )(γeP . For any value of L, there is a γ * that 
maximizes the throughput. To see the effects of varying 
the transmission rate we choose a fixed value of L and 
graph the throughput (9) as a function of R. To illustrate 
how this graph changes with different values of L we 
have shown three plots on Figure 4. The solid line uses a 
packet length of 50 bits. If we use this value of L in (13) 
we obtain as a solution γ * = 9.58, which from (6) 
corresponds to a rate of R* = 521.9 kbps to maximize the 
throughput. The small dotted line uses a packet length of 
200 bits. If we use this value of L in (13) we obtain as a 
solution γ * = 12.95, or a rate of R* = 386.1 kbps to 
maximize the throughput. The large dotted line uses a 
packet length of 2000 bits. If we use this value of L in 
(13) we obtain as a solution *γ  = 18.24, or a rate of R* 
= 274.1 kbps to maximize the throughput. 
 
We can see from Figure 4 that as the packet length 
increases the rate necessary to maximize the throughput 
decreases. Unlike Figure 4, however, the slope at which 
the throughput decays remains approximately constant 
for the different packet lengths. For rates less than the 
optimal rate, the throughput increases linearly with a 
slope of (LC)/ L. We can also make a general conclusion 
based on the shapes of the plots in Figures 3 and 4 by 
saying that the throughput is more sensitive to changes in 
the transmission rate than it is to changes in the packet 
length. Also, it can be seen that the maximum throughput 
achieved increases with increasing packet length, up to a 
point. If the packet length gets too large, then the 
maximum throughput begins to decrease. Based on the 
graphs in Figure 3, we can say that the optimum length 
to achieve the maximum throughput (L**) is somewhere 
between 50 and 2000 bits. This observation is confirmed 
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when we optimize the throughput with respect to both 
SNR and packet length. 
 
To maximize the throughput with respect to both the 
packet length and the transmission rate, we can write the 
throughput solely as a function of the SNR by graphing 
(4.2) and substituting L* (4.4) for the length, and R* 
(3.4) for the rate. In Figures 3 through 5 we have 
assumed a constant value (5*106) for P/No. In reality, 
this value can change as a result of a number of different 
situations. P depends on the location of the mobile in 
relation to the base station and N0 depends on the level 
of interference present at the mobile. To illustrate how 
the throughput is affected by these different values of 
P/No we put three different plots in Figure 7. The solid 
line uses a value of 106, the small dotted line uses a 
value of 5*106, and the large dotted line uses a value of 
107. A very important conclusion can be drawn from 
this. The actual value of P/No only determines the value 
of the maximum throughput. A high value of P/No 
indicates a high maximum throughput, and a low value 
indicates a low maximum throughput. The important 
thing to note from Figure 7  is that the value of the SNR 
to maximize the throughput is independent of the value 
of P/No. We can see that the SNR to maximize 
throughput for a Gaussian Channel is γ**=11.47. This is 
indicated by the vertical line in Figure 7. We can now 
use this value in (11) to find that the packet length to 
achieve maximum throughput is L** (γ**)=108 bits. 
This packet length is also independent of P/No 

 
Figure 7: Throughput vs SNR using joint optimization 

(1) 
 

Figure 8: Throughput vs SNR using joint optimization 
(2) 

 

6.4 Graphical analysis 
 
Figure 7 and figure 8 has shown the throughput 
optimization with respect to joint optimization in terms 
of SNR(Signal to Noise Ratio) in White Gaussian Noise 
channel. We have analyze throughput with respect to 
SNR and has kept some fixes values for P/ 0N . Here P is 

the received signal power and 0N  is the received noise 
power. In generalized form the value of P is 

watts910*5 −  and the value of 0N is 1510− watts/Hz. 

So, the value of 
0N

P
 is 510*5 Hz. In figure 6.1 we 

have taken three value of
0N

P
, like 610 ,

76 1010*5 and . We have seen that for each 
assumption the throughput has reached in maximum 
peak in a certain term and then has fallen down. For 
different value each curve has reached its maximum peak 
in different level but there was one thing common. That 
was the value of SNR. In our Experiment we have seen 
that all the three curves has the maximum peak in the 
same value of SNR. Figure 7 has showed that with a 
vertical line between all the curves. Figure 8 was an 
extension of Figure 8. Here we have analyzed throughput 

with different value of
0N

P
, and we have got the same 

result. So, we have come to the decision that in White 
Gaussian Noise Channel the joint optimization in terms 
of SNR has no impact on the throughput. 
 
D. Rayleigh Fading Channel 
 
For a model that corresponds to mobile radio 
communications, we can perform the same analysis for a 
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fast fading Rayleigh channel. For non-coherent FSK in a 
Rayleigh fading channel, the probability of a bit error is 
given by: 
 

G
GPe +

=
2

1)(  
 
(14) 

 
 
We can see how a changing packet length affects the 
throughput by choosing a fixed transmission rate and 
graphing (4), with Pe(G) replacing Pe(), as a function 
of the packet length. To illustrate the effects of changing 
the transmission rate on the throughput graph, we have 
three plots on Figure 6. The solid line uses a transmission 
rate of 10 kbps corresponding to G = 500 from (6) which 
from (11) yields a packet length of L*(500) = 98 bits to 
maximize the throughput. The small dotted line uses a 
transmission rate of 100 kbps corresponding to G = 50 
which yields a packet length of L*(50) = 38 bits to 
maximize the throughput. The large dotted line uses a 
transmission rate of 500 kbps corresponding to G = 10 
which yields a packet length of L*(10) = 24 bits to 
maximize the throughput. The same conclusions and 
observations can be made from Figure 6, 7 and 8 as those 
made from Figure 3, 4 and 5. The only real difference is 
the scale of the numbers used. Because a fading channel 
imposes more rigorous conditions on a transmission 
system, the achievable throughput will be lower than a 
Gaussian channel. Consequently, the system will have to 
operate at higher average SNR values and smaller 
average packet lengths. 
 
From (9) the bit rate to maximize throughput is found to 
be: 











 +−−−
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4
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This solution results from substituting (11) for )(Gf and 

(14) for )(GPe . To see how throughput changes as a 
function of the transmission rate we graph the throughput 
as a function of R with L fixed. To illustrate the effects 
of changing the packet length we have three plots on 
Figure 9. The solid line uses a packet length of 20 bits. 
We can use this value in (15) to tell us that the 
transmission rate to maximize the throughput is R* = 
296.2 kbps (G* = 16.88). The small dotted line uses a 
packet length of 40 bits. From (15), the transmission rate 
to maximize throughput is R* = 135.3 kbps (G* = 

36.95). The large dotted line uses a packet length of 100 
bits. From (15), the transmission rate to maximize 
throughput is R* = 51.6 kbps (G* = 96.98). The same 
conclusions and observations can be made from Figure 
12, 13 and 14 as those made from Figure 2, 3 and 4. 
Again, the only real difference is the numbers used. The 
transmission rate and throughput values are much 
smaller and the G values are much larger. An interesting 
result that follows from (13) is: 

163(
2
1

163
4* 2

2
+−+−=

+−−−
= LLL

LLL
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(14) 

 
This allows us to determine the value of the SNR to 
achieve maximum throughput for a given packet length 
in a Rayleigh fading channel. 
 
To maximize the throughput with respect to both the 
packet length and transmission rate we can write the 
throughput as a function of SNR by using equation (9) 
and substituting L* (14) for the length, and R* (6) for the 
rate. The result is in Figure 13, 14. The same changes are 
made in P/No as were made in Figure 9 and 10 and the 
same conclusions can be drawn. The SNR value that 
maximizes throughput for a Rayleigh fading channel is 
G** = 28.12 and is independent of the value of P/No. 
This can be seen by the vertical line in Figure 13. We can 
now use this value in (11) to find that the packet length 
to achieve maximum throughput is L**(G**) = 31 bits. 
This value is also independent of P/No. The rate to 
maximize throughput R** is dependent on P/No from 
(6). 

 
Figure 9:Throughput vs L for a Fixed Transmission 

Rate(Rayleigh Fading Channel) (1) 
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Figure 10: Throughput vs L for a Fixed Transmission 

Rate(Rayleigh Fading Channel) (2) 

 
Figure 11: Throughput vs L for a Fixed Transmission 

Rate(Rayleigh Fading Channel) (3) 

 
Figure 12: Throughput vs Rate for a Fixed Packet 

Length(Rayleigh Fading Channel) 

 
Figure 13: Throughput vs SNR Using Joint Optimization 

(Rayleigh Fading Channel) (1) 

 
Figure 14: Throughput vs SNR Using Joint 
Optimization(Rayleigh Fading Channel) (2) 

 
Graphical analysis 
 
In rayleigh fading channel we have observed all the 
possibilities that we have done in the previous chapters. 
That means in this chapter we have analyzed throughput 
in terms of transmission rate keeping packet length fixed, 
packet length keeping the transmission rate fixed. Also in 
this chapter we have observed throughput in terms SNR 
using joint optimization under the Rayleigh fading 
channel. 
 
Figure 9, 10 and 11 is the analysis of throughput in terms 
of packet length where the transmission rate is kept 
fixed. From those graphs we have observed that for 
transmission rate of 150 Kbps to 300 kbps we have got 
the maximum throughput of 300Kbps. If we go further, 
then the throughput has dropped toward zero. 
Figure 12 is the representation of throughput with the 
function of transmission rate and fixed packet length. We 
have also observed that for transmission rate of 100 to 
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300 Kbps we have got the highest peak of throughput 
and the packet size was within 100 to 200 bits, which has 
matched with our previous observations. 
 
Figure 13 and 14 has done with the throughput analysis 
in terms of SNR where we have used joint optimization. 
In our observations we have noticed that the throughput 
has no effect on the value of SNR in Rayleigh fading 
channel. For different assumption the throughput is 
different but the highest pick of each throughput is at the 
same value of SNR. In our observation we have got the 
value of SNR is 38 db.   
 
 

IV. CONCLUSION 
 

Maximizing throughput in a wireless channel is a very 
important aspect in the quality of a voice or data 
transmission. In this chapter, we have shown that factors 
such as the optimum packet length and optimum 
transmission rate are all functions of the signal to noise 
ratio. These equations can be used to find the optimum 
signal to noise ratio that the system should be operated at 
to achieve the maximum throughput. The key concept 
behind this research is that for each particular channel 
(AWGN or Rayleigh) and transmission scheme ( ), there 
exists a specific value for the signal to noise ratio to 
maximize the throughput. Once the probability of error,   
is known, this optimal SNR value can be obtained. 
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